The Capital Asset Pricing Model as a corollary of the Black–Scholes model
نویسنده
چکیده
We consider a financial market in which two securities are traded: a stock and an index. Their prices are assumed to satisfy the Black–Scholes model. Besides assuming that the index is a tradable security, we also assume that it is efficient, in the following sense: we do not expect a prespecified self-financing trading strategy whose wealth is almost surely nonnegative at all times to outperform the index greatly. We show that, for a long investment horizon, the appreciation rate of the stock has to be close to the interest rate (assumed constant) plus the covariance between the volatility vectors of the stock and the index. This contains both a version of the Capital Asset Pricing Model and our earlier result that the equity premium is close to the squared volatility of the index.
منابع مشابه
Numerical Solution of Fractional Black Scholes Equation Based on Radial Basis Functions Method
Options pricing have an important role in risk control and risk management. Pricing discussion requires modelling process, solving methods and implementing the model by real data in a given market. In this paper we show a model for underlying asset based on fractional stochastic models which is a particular type of behavior of stochastic assets changing. In addition a numerical method based on ...
متن کاملBarrier options pricing of fractional version of the Black-Scholes model
In this paper two different methods are presented to approximate the solution of the fractional Black-Scholes equation for valuation of barrier option. Also, the two schemes need less computational work in comparison with the traditional methods. In this work, we propose a new generalization of the two-dimensional differential transform method and decomposition method that will extend the appli...
متن کاملEuropean option pricing of fractional Black-Scholes model with new Lagrange multipliers
In this paper, a new identification of the Lagrange multipliers by means of the Sumudu transform, is employed to btain a quick and accurate solution to the fractional Black-Scholes equation with the initial condition for a European option pricing problem. Undoubtedly this model is the most well known model for pricing financial derivatives. The fractional derivatives is described in Caputo sen...
متن کاملApplication of Monte Carlo Simulation in the Assessment of European Call Options
In this paper, the pricing of a European call option on the underlying asset is performed by using a Monte Carlo method, one of the powerful simulation methods, where the price development of the asset is simulated and value of the claim is computed in terms of an expected value. The proposed approach, applied in Monte Carlo simulation, is based on the Black-Scholes equation which generally def...
متن کاملValuation of installment option by penalty method
In this paper, installment options on the underlying asset which evolves according to Black-Scholes model and pays constant dividend to its owner will be considered. Applying arbitrage pricing theory, the non-homogeneous parabolic partial differential equation governing the value of installment option is derived. Then, penalty method is used to value the European continuous installment call opt...
متن کامل